Making sense out of fusing bosons
Each particle collision at the LHC involves many possible pathways in which different particles combine to give rise to the spray of debris that experimenters see. In 2017, David Rousseau at IJCLab in Orsay, a member of the ATLAS collaboration, asked one of his students, Aishik Ghosh, to improve his team’s ability to detect a specific pathway. That particular pathway is quite important since it’s used to measure properties of the Higgs boson, a particle (first measured in 2012) that helps explain the mass of all other fundamental particles.
It was a pretty big ask. “When a grad student gets started in ATLAS, they’re a tiny cog in a giant, well-oiled machine of 3,500 physicists, who all seem to know exactly what they’re doing,” said Ghosh.
The pathway Ghosh was asked to study occurs via several steps. First, the two colliding protons each emit a W boson, a particle associated with the weak nuclear force. These two bosons fuse together, changing their identity to form a Higgs boson. The Higgs boson then decays, forming a pair of Z bosons, another particle associated with the weak force. Finally, those Z bosons themselves each decay into a lepton, like an electron, and its antimatter partner, like a positron.
A Feynman diagram for the pathway studied by Aishik Ghosh.
Credit:
ATLAS
Measurements like the one Ghosh was studying are a key way of investigating the properties of the Higgs boson. By precisely measuring how long it takes the Higgs boson to decay, physicists could find evidence of it interacting with new, undiscovered particles that are too massive for the LHC to produce directly.
Ghosh started on the project, hoping to find a small improvement in the collaboration’s well-tested methods. Instead, he noticed a larger issue. The goal he was given, of detecting a single pathway by itself, didn’t actually make sense.
Source link